Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.745
Filtrar
1.
Nanoscale ; 16(16): 7965-7975, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38567436

RESUMEN

Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease that mostly affects joints. Although RA therapy has made significant progress, difficulties including extensive medication metabolism and its quick clearance result in its inadequate bioavailability. The anti-inflammatory effect of zein was reported with other medications, but it has certain limitations. There are reports on the anti-oxidant and anti-inflammatory effect of aescin, which exhibits low bioavailability for the treatment of rheumatoid arthritis. Also, the combinatorial effect of zein with other effective drug delivery systems is still under investigation for the treatment of experimental collagen-induced rheumatoid arthritis. The focus of this study was to formulate and define the characteristics of zein-coated gelatin nanoparticles encapsulated with aescin (Ze@Aes-GNPs) and to assess and contrast the therapeutic effectiveness of Ze@Aes-GNPs towards collagen-induced RA in Wistar rats. Nanoprecipitation and the layer-by-layer coating process were used to fabricate Ze@Aes-GNPs and their hydrodynamic diameter was determined to be 182 nm. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to further validate the size, shape, and surface morphology of Ze@Aes-GNPs. When tested against foreskin fibroblasts (BJ), these nanoparticles demonstrated significantly high cytocompatibility. Both Aes and Ze@Aes-GNPs were effective in treating arthritis, as shown by the decreased edoema, erythema, and swelling of the joints, between which Ze@Aes-GNPs were more effective. Further, it was demonstrated that Aes and Ze@Aes-GNPs reduced the levels of oxidative stress (articular elastase, lipid peroxidation, catalase, superoxide dismutase and nitric oxide) and inflammatory indicators (TNF-α, IL-1ß and myeloperoxidase). The histopathology findings further demonstrated that Ze@Aes-GNPs considerably reduced the infiltration of inflammatory cells at the ankle joint cartilage compared to Aes. Additionally, immunohistochemistry examination showed that treatment with Ze@Aes-GNPs suppressed the expression of pro-inflammatory markers (COX-2 and IL-6) while increasing the expression of SOD1. In summary, the experiments indicated that Aes and Ze@Aes-GNPs lowered the severity of arthritis, and critically, Ze@Aes-GNPs showed better effectiveness in comparison to Aes. This suppression of oxidative stress and inflammation was likely driven by Aes and Ze@Aes-GNPs.


Asunto(s)
Artritis Experimental , Escina , Gelatina , Nanopartículas , Ratas Wistar , Zeína , Animales , Gelatina/química , Zeína/química , Ratas , Nanopartículas/química , Artritis Experimental/tratamiento farmacológico , Artritis Experimental/patología , Artritis Experimental/metabolismo , Escina/química , Escina/farmacología , Masculino , Antiinflamatorios/química , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Artritis Reumatoide/tratamiento farmacológico , Artritis Reumatoide/patología , Artritis Reumatoide/metabolismo , Humanos , Fibroblastos/metabolismo , Fibroblastos/efectos de los fármacos , Inflamación/tratamiento farmacológico , Inflamación/patología , Colágeno/química
2.
Food Chem ; 448: 139135, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38569405

RESUMEN

The impacts of enzymatically produced acylglycerol and glycerin monostearate on the characteristics of gelatin-stabilized omega-3 emulsions and microcapsules were investigated. Tuna oil was enzymatically produced and the resulting acylglycerol was mixed with tuna oil at 12.5% (w/w) to prepare a novel oil phase. This oil phase was stabilized by gelatin to prepare oil-in-water emulsions and subsequent microcapsules via complex coacervation. The tuna oil with glycerin monostearate (GMS) at 1 and 2% (w/w) were used as controls. Results showed that both acylglycerol and GMS significantly reduced the emulsion droplet size and zeta potential, while increasing the viscoelasticity and stability. The diacylglycerol/monoacylglycerol were involved in the oil/water interfacial layer formation by lowering interfacial tension and increasing droplet surface hydrophobicity. Overall, the changed emulsion properties promoted the complex coacervation and contributed to the formation of microcapsules with improved oxidative stability. Therefore, enzymatically produced acylglycerol can develop high-quality stable omega-3 microencapsulated novel food ingredients.


Asunto(s)
Cápsulas , Emulsiones , Ácidos Grasos Omega-3 , Aceites de Pescado , Gelatina , Emulsiones/química , Cápsulas/química , Gelatina/química , Ácidos Grasos Omega-3/química , Aceites de Pescado/química , Animales , Tamaño de la Partícula , Glicerol/química , Atún , Glicéridos/química , Interacciones Hidrofóbicas e Hidrofílicas , Biocatálisis
3.
Artículo en Chino | MEDLINE | ID: mdl-38664026

RESUMEN

Objective: To investigate the effects of gelatin methacrylate anhydride (GelMA) hydrogel loaded with small extracellular vesicles derived from human umbilical cord mesenchymal stem cells (hUCMSCs-sEVs) in the treatment of full-thickness skin defect wounds in mice. Methods: This study was an experimental study. hUCMSCs-sEVs were extracted by ultracentrifugation, their morphology was observed through transmission electron microscope, and the expression of CD9, CD63, tumor susceptibility gene 101 (TSG101), and calnexin was detected by Western blotting. The human umbilical vein endothelial cells (HUVECs), the 3rd and 4th passages of human epidermal keratinocytes (HEKs) and human dermal fibroblasts (HDFs) were all divided into blank control group (routinely cultured) and hUCMSC-sEV group (cultured with the cell supernatant containing hUCMSCs-sEVs). The cell scratch test was performed and the cell migration rates at 6, 12, and 24 h after scratching were calculated, the cell Transwell assay was performed and the number of migration cells at 12 h after culture was calculated, and the proportion of proliferating cells was detected by 5-acetylidene-2'-deoxyuridine and Hoechst staining at 24 h after culture, with sample numbers being all 3. The simple GelMA hydrogel and the GelMA hydrogel loaded with hUCMSCs-sEVs (hereinafter referred to as hUCMSC-sEV/GelMA hydrogel) were prepared. Then the micromorphology of 2 kinds of hydrogels was observed under scanning electron microscope, the distribution of hUCMSCs-sEVs was observed by laser scanning confocal microscope, and the cumulative release rates of hUCMSCs-sEVs at 0 (immediately), 2, 4, 6, 8, 10, and 12 d after soaking hUCMSC-sEV/GelMA hydrogel in phosphate buffer solution (PBS) were measured and calculated by protein colorimetric quantification (n=3). Twenty-four 6-week-old male C57BL/6J mice were divided into PBS group, hUCMSC-sEV alone group, GelMA hydrogel alone group, and hUCMSC-sEV/GelMA hydrogel group according to the random number table, with 6 mice in each group, and after the full-thickness skin defect wounds on the back of mice in each group were produced, the wounds were performed with PBS injection, hUCMSC-sEV suspenson injection, simple GelMA coverage, and hUCMSC-sEV/GelMA hydrogel coverage, respectively. Wound healing was observed on post injury day (PID) 0 (immediately), 4, 8, and 12, and the wound healing rates on PID 4, 8, and 12 were calculated, and the wound tissue was collected on PID 12 for hematoxylin-eosin staining to observe the structure of new tissue, with sample numbers being both 6. Results: The extracted hUCMSCs-sEVs showed a cup-shaped structure and expressed CD9, CD63, and TSG101, but barely expressed calnexin. At 6, 12, and 24 h after scratching, the migration rates of HEKs (with t values of 25.94, 20.98, and 20.04, respectively), HDFs (with t values of 3.18, 5.68, and 4.28, respectively), and HUVECs (with t values of 4.32, 19.33, and 4.00, respectively) in hUCMSC-sEV group were significantly higher than those in blank control group (P<0.05). At 12 h after culture, the numbers of migrated HEKs, HDFs, and HUVECs in hUCMSC-sEV group were 550±23, 235±9, and 856±35, respectively, which were significantly higher than 188±14, 97±6, and 370±32 in blank control group (with t values of 22.95, 23.13, and 17.84, respectively, P<0.05). At 24 h after culture, the proportions of proliferating cells of HEKs, HDFs, and HUVECs in hUCMSC-sEV group were significantly higher than those in blank control group (with t values of 22.00, 13.82, and 32.32, respectively, P<0.05). The inside of simple GelMA hydrogel showed a loose and porous sponge-like structure, and hUCMSCs-sEVs was not observed in it. The hUCMSC-sEV/GelMA hydrogel had the same sponge-like structure, and hUCMSCs-sEVs were uniformly distributed in clumps. The cumulative release rate curve of hUCMSCs-sEVs from hUCMSC-sEV/GelMA hydrogel tended to plateau at 2 d after soaking, and the cumulative release rate of hUCMSCs-sEVs was (59.2±1.8)% at 12 d after soaking. From PID 0 to 12, the wound areas of mice in the 4 groups gradually decreased. On PID 4, 8, and 12, the wound healing rates of mice in hUCMSC-sEV/GelMA hydrogel group were significantly higher than those in the other 3 groups (P<0.05); the wound healing rates of mice in GelMA hydrogel alone group and hUCMSC-sEV alone group were significantly higher than those in PBS group (P<0.05). On PID 8 and 12, the wound healing rates of mice in hUCMSC-sEV alone group were significantly higher than those in GelMA hydrogel alone group (P<0.05). On PID 12, the wounds of mice in hUCMSC-sEV/GelMA hydrogel group showed the best wound epithelization, loose and orderly arrangement of dermal collagen, and the least number of inflammatory cells, while the dense arrangement of dermal collagen and varying degrees of inflammatory cell infiltration were observed in the wounds of mice in the other 3 groups. Conclusions: hUCMSCs-sEVs can promote the migration and proliferation of HEKs, HDFs, and HUVECs which are related to skin wound healing, and slowly release in GelMA hydrogel. The hUCMSC-sEV/GelMA hydrogel as a wound dressing can significantly improve the healing speed of full-thickness skin defect wounds in mice.


Asunto(s)
Vesículas Extracelulares , Gelatina , Hidrogeles , Células Madre Mesenquimatosas , Cordón Umbilical , Cicatrización de Heridas , Animales , Ratones , Humanos , Cordón Umbilical/citología , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/efectos de los fármacos , Gelatina/química , Hidrogeles/química , Vesículas Extracelulares/química , Cicatrización de Heridas/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Piel/efectos de los fármacos , Piel/lesiones , Piel/patología , Células Endoteliales de la Vena Umbilical Humana , Metacrilatos/química , Proliferación Celular/efectos de los fármacos , Queratinocitos/efectos de los fármacos
4.
Biomed Mater ; 19(3)2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38626774

RESUMEN

Bioinks play a crucial role in tissue engineering, influencing mechanical and chemical properties of the printed scaffold as well as the behavior of encapsulated cells. Recently, there has been a shift from animal origin materials to their synthetic alternatives. In this context, we present here bioinks based on fully synthetic and biodegradable poly(α,L-amino acids) (PolyAA) as an alternative to animal-based gelatin methacrylate (Gel-Ma) bioinks. Additionally, we first reported the possibility of the visible light photoinitiated incorporation of the bifunctional cell adhesive RGD peptide into the PolyAA hydrogel matrix. The obtained hydrogels are shown to be cytocompatible, and their mechanical properties closely resemble those of gelatin methacrylate-based scaffolds. Moreover, combining the unique properties of PolyAA-based bioinks, the photocrosslinking strategy, and the use of droplet-based printing allows the printing of constructs with high shape fidelity and structural integrity from low-viscosity bioinks without using any sacrificial components. Overall, presented PolyAA-based materials are a promising and versatile toolbox that extends the range of bioinks for droplet bioprinting.


Asunto(s)
Aminoácidos , Materiales Biocompatibles , Gelatina , Hidrogeles , Luz , Ingeniería de Tejidos , Andamios del Tejido , Hidrogeles/química , Andamios del Tejido/química , Ingeniería de Tejidos/métodos , Gelatina/química , Aminoácidos/química , Materiales Biocompatibles/química , Animales , Bioimpresión/métodos , Oligopéptidos/química , Tinta , Metacrilatos/química , Humanos , Impresión Tridimensional , Ensayo de Materiales , Ratones , Viscosidad
5.
Mar Drugs ; 22(4)2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38667786

RESUMEN

Lumpfish (Cyclopterus lumpus) is an underutilized marine resource that is currently only being exploited for roe. Lumpfish skin was pre-treated with alkali (0.1M NaOH) and acid (0.1M HCl) at a skin to chemical ratio of 1:10 for 24 h at 5 °C to remove non-collagenous proteins and minerals. The pre-treated skin was washed, and gelatine was extracted with 0.1M of acetic acid at three different ratios (1:5, 1:10, and 1:15), time (12,18, and 24 h), and temperature combinations (12, 28, and 24 °C). The highest total extraction yield (>40%) was obtained with combinations of extraction ratios of 1:15 and 1:10 with a longer time (24 h) and higher temperature (18-24 °C). The highest gelatine content was obtained with an extraction period of 24 h and ratio of 1:10 (>80%). SDS-PAGE analysis confirmed the presence of type-I collagen. A rheological evaluation indicated melting and gelling temperatures, gel strength, and viscosity properties comparable to existing cold-water gelatine sources.


Asunto(s)
Gelatina , Piel , Animales , Gelatina/química , Piel/química , Piel/metabolismo , Hidrólisis , Peces , Temperatura , Perciformes , Colágeno Tipo I/química , Viscosidad , Proteínas de Peces/aislamiento & purificación , Proteínas de Peces/química
6.
ACS Appl Mater Interfaces ; 16(15): 18522-18533, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38564436

RESUMEN

The creation of large, volumetric tissue-engineered constructs has long been hindered due to the lack of effective vascularization strategies. Recently, 3D printing has emerged as a viable approach to creating vascular structures; however, its application is limited. Here, we present a simple and controllable technique to produce porous, free-standing, perfusable tubular networks from sacrificial templates of polyelectrolyte complex and coatings of salt-containing citrate-based elastomer poly(1,8-octanediol-co-citrate) (POC). As demonstrated, fully perfusable and interconnected POC tubular networks with channel diameters ranging from 100 to 400 µm were created. Incorporating NaCl particulates into the POC coating enabled the formation of micropores (∼19 µm in diameter) in the tubular wall upon particulate leaching to increase the cross-wall fluid transport. Casting and cross-linking gelatin methacrylate (GelMA) suspended with human osteoblasts over the free-standing porous POC tubular networks led to the fabrication of 3D cell-encapsulated constructs. Compared to the constructs without POC tubular networks, those with either solid or porous wall tubular networks exhibited a significant increase in cell viability and proliferation along with healthy cell morphology, particularly those with porous networks. Taken together, the sacrificial template-assisted approach is effective to fabricate tubular networks with controllable channel diameter and patency, which can be easily incorporated into cell-encapsulated hydrogels or used as tissue-engineering scaffolds to improve cell viability.


Asunto(s)
Hidrogeles , Andamios del Tejido , Humanos , Hidrogeles/química , Supervivencia Celular , Porosidad , Andamios del Tejido/química , Ingeniería de Tejidos/métodos , Impresión Tridimensional , Gelatina/química
7.
Food Res Int ; 185: 114277, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38658069

RESUMEN

For some food applications, it is desirable to control the flavor release profiles of volatile flavor compounds. In this study, the effects of crosslinking method and protein composition on the flavor release properties of emulsion-filled protein hydrogels were explored, using peppermint essential oil as a model volatile compound. Emulsion-filled protein gels with different properties were prepared using different crosslinking methods and gelatin concentrations. Flavor release from the emulsion gels was then monitored using an electronic nose, gas chromatography-mass spectrometry (GC-MS), and sensory evaluation. Enzyme-crosslinked gels had greater hardness and storage modulus than heat-crosslinked ones. The hardness and storage modulus of the gels increased with increasing gelatin concentration. For similar gel compositions, flavor release and sensory perception were faster from the heat-crosslinked gels than the enzyme-crosslinked ones. For the same crosslinking method, flavor release and perception decreased with increasing gelatin concentration, which was attributed to retardation of flavor diffusion through the hydrogel matrix. Overall, this study shows that the release of hydrophobic aromatic substances can be modulated by controlling the composition and crosslinking of protein hydrogels, which may be useful for certain food applications.


Asunto(s)
Emulsiones , Aromatizantes , Cromatografía de Gases y Espectrometría de Masas , Mentha piperita , Aceites de Plantas , Mentha piperita/química , Emulsiones/química , Humanos , Aceites de Plantas/química , Aromatizantes/química , Gelatina/química , Reactivos de Enlaces Cruzados/química , Gusto , Hidrogeles/química , Nariz Electrónica , Masculino , Femenino , Adulto
8.
Mar Biotechnol (NY) ; 26(2): 404-420, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38558367

RESUMEN

Optimization of antioxidants and angiotensin-converting enzyme (ACE) inhibitory potential gelatin hydrolysate production from Labeo rohita (rohu) swim bladder (SBGH) by alcalase using central composite design (CCD) of response surface methodology (RSM) was investigated. The maximum degree of hydrolysis (DH), 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid (ABTS), total antioxidants (TAO), and ACE inhibitory activity were achieved at 0.1:1.0 (w/w) enzyme to substrate ratio, 61 °C hydrolysis temperature, and 94-min hydrolysis time. The resulting SBGH obtained at 19.92% DH exhibited the DPPH (24.28 µM TE/mg protein), ABTS (34.47 µM TE/mg protein), TAO (12.01 µg AAE/mg protein), and ACE inhibitory (4.91 µg/mg protein) activity. Furthermore, SBGH at 100 µg/ml displayed osteogenic property without any toxic effects on MC3T3-E1 cells. Besides, the protein content of rohu swim bladder gelatin (SBG) and SBGH was 93.68% and 94.98%, respectively. Both SBG and SBGH were rich in glycine, proline, glutamic acid, alanine, arginine, and hydroxyproline amino acids. Therefore, SBGH could be an effective nutraceutical in functional food development.


Asunto(s)
Sacos Aéreos , Inhibidores de la Enzima Convertidora de Angiotensina , Antioxidantes , Gelatina , Animales , Gelatina/química , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Inhibidores de la Enzima Convertidora de Angiotensina/química , Antioxidantes/farmacología , Antioxidantes/química , Sacos Aéreos/química , Sacos Aéreos/metabolismo , Ratones , Hidrolisados de Proteína/química , Hidrolisados de Proteína/farmacología , Osteogénesis/efectos de los fármacos , Cyprinidae/metabolismo , Hidrólisis , Subtilisinas/metabolismo , Compuestos de Bifenilo/química , Proteínas de Peces/metabolismo , Picratos
9.
Food Chem ; 448: 139176, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38574719

RESUMEN

Using 3D printing technology, a gelatin-polyvinyl alcohol­carbon dots (GPC) layer+corn starch-polyvinyl alcohol-cinnamon essential oil (CPC) layer active bilayer film with an external barrier function and an internal controlled-release effect was successfully produced for food preservation. The GPC film was provided with potent antioxidant and UV blocking properties by the banana peel carbon dots (CDs). The cinnamon essential oil (CEO) had the strongest interaction with the film matrix at 3% (w/w), causing the CPC film having the lowest surface wettability, good integrity, and lowest crystallinity. The CEO's stability and releasing effectiveness were greatly enhanced by the creation of a bilayer film. At 60% filling rate of the CPC layer, the bilayer film showed the highest CEO retention after drying and the best CEO release performance. Finally, the created active bilayer film was found to significantly improve the sensory quality stability of the spicy essential oil microcapsule powders. It also successfully extended the mangoes' shelf life by delaying browning and rot.


Asunto(s)
Cinnamomum zeylanicum , Embalaje de Alimentos , Gelatina , Musa , Aceites Volátiles , Impresión Tridimensional , Almidón , Aceites Volátiles/química , Embalaje de Alimentos/instrumentación , Cinnamomum zeylanicum/química , Gelatina/química , Almidón/química , Musa/química , Carbono/química , Conservación de Alimentos/instrumentación , Conservación de Alimentos/métodos , Puntos Cuánticos/química , Zea mays/química
10.
Nat Commun ; 15(1): 3435, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38653959

RESUMEN

Wound healing is an obvious clinical concern that can be hindered by inadequate angiogenesis, inflammation, and chronic hypoxia. While exosomes derived from adipose tissue-derived stem cells have shown promise in accelerating healing by carrying therapeutic growth factors and microRNAs, intracellular cargo delivery is compromised in hypoxic tissues due to activated hypoxia-induced endocytic recycling. To address this challenge, we have developed a strategy to coat oxygen nanobubbles with exosomes and incorporate them into a polyvinyl alcohol/gelatin hybrid hydrogel. This approach not only alleviates wound hypoxia but also offers an efficient means of delivering exosome-coated nanoparticles in hypoxic conditions. The self-healing properties of the hydrogel, along with its component, gelatin, aids in hemostasis, while its crosslinking bonds facilitate hydrogen peroxide decomposition, to ameliorate wound inflammation. Here, we show the potential of this multifunctional hydrogel for enhanced healing, promoting angiogenesis, facilitating exosome delivery, mitigating hypoxia, and inhibiting inflammation in a male rat full-thickness wound model.


Asunto(s)
Exosomas , Hidrogeles , Oxígeno , Cicatrización de Heridas , Exosomas/metabolismo , Cicatrización de Heridas/efectos de los fármacos , Animales , Hidrogeles/química , Masculino , Ratas , Oxígeno/metabolismo , Humanos , Ratas Sprague-Dawley , Nanopartículas/química , Alcohol Polivinílico/química , Neovascularización Fisiológica/efectos de los fármacos , Gelatina/química , Hipoxia/metabolismo , Inflamación/metabolismo
11.
Int J Mol Sci ; 25(5)2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38474144

RESUMEN

In tissue engineering (TE), the support structure (scaffold) plays a key role necessary for cell adhesion and proliferation. The protein constituents of the extracellular matrix (ECM), such as collagen, its derivative gelatine, and elastin, are the most attractive materials as possible scaffolds. To improve the modest mechanical properties of gelatine, a strategy consists of crosslinking it, as naturally occurs for collagen, which is stiffened by the oxidative action of lysyl oxidase (LO). Here, a novel protocol to crosslink gelatine has been developed, not using the commonly employed crosslinkers, but based on the formation of imine bonds or on aldolic condensation reactions occurring between gelatine and properly synthesized copolymers containing amine residues via LO-mediated oxidation. Particularly, we first synthesized and characterized an amino butyl styrene monomer (5), its copolymers with dimethylacrylamide (DMAA), and its terpolymer with DMAA and acrylic acid (AA). Three acryloyl amidoamine monomers (11a-c) and their copolymers with DMAA were then prepared. A methacrolein (MA)/DMAA copolymer already possessing the needed aldehyde groups was finally developed to investigate the relevance of LO in the crosslinking process. Oxidation tests of amine copolymers with LO were performed to identify the best substrates to be used in experiments of gelatine reticulation. Copolymers obtained with 5, 11b, and 11c were excellent substrates for LO and were employed with MA/DMAA copolymers in gelatine crosslinking tests in different conditions. Among the amine-containing copolymers, that obtained with 5 (CP5/DMMA-43.1) afforded a material (M21) with the highest crosslinking percentage (71%). Cytotoxicity experiments carried out on two cell lines (IMR-32 and SH SY5Y) with the analogous (P5) of the synthetic constituent of M21 (CP5/DMAA) had evidenced no significant reduction in cell viability, but proliferation promotion, thus establishing the biocompatibility of M21 and the possibility to develop it as a new scaffold for TE, upon further investigations.


Asunto(s)
Aminas , Gelatina , Gelatina/química , Aldehídos , Colágeno/química , Polímeros
12.
Sci Rep ; 14(1): 7505, 2024 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-38553565

RESUMEN

Addressing the increasing drug resistance in pathogenic microbes, a significant threat to public health, calls for the development of innovative antibacterial agents with versatile capabilities. To enhance the antimicrobial activity of non-toxic biomaterials in this regard, this study focuses on novel, cost-effective chitosan (CS)-based hydrogels, crosslinked using gelatin (GEL), formaldehyde, and metallic salts (Ag+, Cu2+, and Zn2+). These hydrogels are formed by mixing CS and GEL with formaldehyde, creating iminium ion crosslinks with metallic salts without hazardous crosslinkers. Characterization techniques like FTIR, XRD, FESEM, EDX, and rheological tests were employed. FTIR analysis showed metal ions binding to amino and hydroxyl groups on CS, enhancing hydrogelation. FESEM revealed that freeze-dried hydrogels possess a crosslinked, porous structure influenced by various metal ions. Antibacterial testing against gram-negative and gram-positive bacteria demonstrated significant bacterial growth inhibition. CS-based hydrogels containing metal ions showed reduced MIC and MBC values against Staphylococcus aureus (0.5, 8, 16 µg/mL) and Escherichia coli (1, 16, 8 µg/mL) for CS-g-GEL-Ag+, CS-g-GEL-Cu2+, and CS-g-GEL-Zn2+. MTT assay results confirmed high biocompatibility (84.27%, 85.24%, 84.96% viability at 10 µg/mL) for CS-based hydrogels towards HFF-1 cells over 48 h. Therefore, due to their non-toxic nature, these CS hydrogels are promising for antibacterial applications.


Asunto(s)
Quitosano , Quitosano/farmacología , Quitosano/química , Gelatina/farmacología , Gelatina/química , Porosidad , Sales (Química) , Antibacterianos/farmacología , Antibacterianos/química , Materiales Biocompatibles/farmacología , Materiales Biocompatibles/química , Metales , Formaldehído , Hidrogeles/farmacología , Hidrogeles/química , Iones
13.
Int J Biol Macromol ; 265(Pt 2): 130710, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38492701

RESUMEN

Developing a polymer-based photocrosslinked 3D printable scaffolds comprised of gelatin methacryloyl (G) and hyaluronic acid methacryloyl (H) incorporated with two molecular weights of polyethylene glycol diacrylate (P) of various concentrations that enables rabbit adipose-derived stem cells (rADSCs) to survive, grow, and differentiate into smooth muscle cells (SMCs). Then, the chemical modification and physicochemical properties of the PGH bioinks were evaluated. The cell viability was assessed via MTT, CCK-8 assay and visualized employing Live/Dead assay. In addition, the morphology and nucleus count of differentiated SMCs were investigated by adopting TRAP (tartrate-resistant acid phosphatase) staining, and quantitative RT-PCR analysis was applied to detect gene expression using two different SMC-specific gene markers α-SMA and SM-MHC. The SMC-specific protein markers namely α-SMA and SM-MHC were applied to investigate SMC differentiation ability by implementing Immunocytofluorescence staining (ICC) and western blotting. Moreover, the disk, square, and tubular cellular models of PGH7 (GelMA/HAMA=2/1) + PEGDA-8000 Da, 3% w/v) hybrid bioink were printed using an extrusion bioprinting and cell viability of rADSCs was also analysed within 3D printed square construct practising Live/Dead assay. The results elicited the overall viability of SMCs, conserving its phenotype in biocompatible PGH7 hybrid bioink revealing its great potential to regenerate SMCs associated organs repair.


Asunto(s)
Hidrogeles , Andamios del Tejido , Animales , Conejos , Andamios del Tejido/química , Hidrogeles/química , Gelatina/química , Músculo Liso , Fenotipo , Células Madre , Impresión Tridimensional , Ingeniería de Tejidos/métodos
14.
Int J Biol Macromol ; 265(Pt 2): 130938, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38493814

RESUMEN

The rapid manufacturing of biocomposite scaffold made of saturated-Poly(ε-caprolactone) (PCL) and unsaturated Polyester (PE) blends with gelatin and modified gelatin (NCO-Gel) is demonstrated. Polyester blend-based scaffold are fabricated with and without applying potential in the melt electrowriting system. Notably, the applied potential induces phase separation between PCL and PE and drives the formation of PE rich spots at the interface of electrowritten fibers. The objective of the current study is to control the phase separation between saturated and unsaturated polyesters occurring in the melt electro-writing process and utilization of this phenomenon to improve efficiency of biofunctionalization at the interface of scaffold via Aza-Michael addition reaction. Electron-deficient triple bonds of PE spots on the fibers exhibit good potential for the biofunctionalization via the aza-Michael addition reaction. PE spots are found to be pronounced in which blend compositions are PCL-PE as 90:10 and 75:25 %. The biofunctionalization of scaffold is monitored through CN bond formation appeared at 400 eV via X-ray photoelectron spectroscopy (XPS) and XPS chemical mapping. The described biofunctionalization methodology suggest avoiding use of multi-step chemical modification on additive manufacturing products and thereby rapid prototyping of functional polymer blend based scaffolds with enhanced biocompatibility and preserved mechanical properties. Additionally one-step additive manufacturing method eliminates side effects of toxic solvents and long modification steps during scaffold fabrication.


Asunto(s)
Poliésteres , Polímeros , Poliésteres/química , Andamios del Tejido/química , Gelatina/química , Ingeniería de Tejidos/métodos
15.
Int J Biol Macromol ; 265(Pt 2): 131062, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38521307

RESUMEN

This study introduces a novel wound dressing by combining nitric oxide-releasing thiolated starch nanoparticles (NO-TS NPs) with gelatin. First, starch was thiolated (TS), and then its nanoparticles were prepared (TS NPs). Subsequently, NPs were covalently bonded to sodium nitrite to obtain NO-releasing TS NPs (NO-TS-NPs) that were incorporated into gelatin sponges at various concentrations. The resulting spherical TS NPs had a mean size of 85.42 ± 5.23 nm, which rose to 100.73 ± 7.41 nm after bonding with sodium nitrite. FTIR spectroscopy confirmed S-nitrosation on the NO-TS NPs' surface, and morphology analysis showed well-interconnected pores in all sponges. With higher NO-TS NPs content, pore size, porosity, and water uptake increased, while compressive modulus and strength decreased. Composites exhibited antibacterial activity, particularly against E. coli, with enhanced efficacy at higher NPs' concentrations. In vitro release studies demonstrated Fickian diffusion, with faster NO release in sponges containing more NPs. The released NO amounts were non-toxic to fibroblasts, but samples with fewer NO-TS NPs exhibited superior cellular density, cell attachment, and collagen secretion. Considering the results, including favorable mechanical strength, release behavior, antibacterial and cellular properties, gelatin sponges loaded with 2 mg/mL of NO-TS NPs can be suitable for wound dressing applications.


Asunto(s)
Gelatina , Nanopartículas , Gelatina/química , Óxido Nítrico , Almidón , Escherichia coli , Nitrito de Sodio , Cicatrización de Heridas , Antibacterianos/farmacología , Antibacterianos/química , Nanopartículas/química , Vendajes/microbiología
16.
Int J Biol Macromol ; 264(Pt 2): 130617, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38447829

RESUMEN

Local antibiotic application might mitigate the burgeoning problem of rapid emergence of antibiotic resistance in pathogenic microbes. To accomplish this, delivery systems must be engineered. Hydrogels have a wide range of physicochemical properties and can mimic the extracellular matrix, rendering them promising materials for local antibacterial agent application. Here, we synthesized antibacterial silicon (Si)-based nickel (Ni) nanoflowers (Si@Ni) and encapsulated them in gelatin methacryloyl (GelMA) using microfluidic and photo-crosslink technology, constructing uniform micro-sized hydrogel spheres (Si@Ni-GelMA). Si@Ni and Si@Ni-GelMA were characterized using X-ray diffraction, transmission electron microscopy, and scanning electron microscopy. Injectable Si@Ni-GelMA exhibited excellent antibacterial activities owing to the antibiotic effect of Ni against Pseudomonas aeruginosa, Klebsiella pneumoniae, and methicillin-resistant Staphylococcus aureus, while showing negligible cytotoxicity. Therefore, the Si@Ni-GelMA system can be used as drug carriers owing to their injectability, visible light-mediated crosslinking, degradation, biosafety, and superior antibacterial properties.


Asunto(s)
Antiinfecciosos , Staphylococcus aureus Resistente a Meticilina , Gelatina/química , Materiales Biocompatibles/química , Silicio , Níquel , Microesferas , Hidrogeles/química , Antibacterianos/farmacología , Metacrilatos/química , Ingeniería de Tejidos
17.
Int J Biol Macromol ; 264(Pt 2): 130666, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38453119

RESUMEN

Three-dimensional (3D) printing allows precise manufacturing of bone scaffolds for patient-specific applications and is one of the most recently developed and implemented technologies. In this study, bilayer and multimaterial alginate dialdehyde-gelatin (ADA-GEL) scaffolds incorporating polydopamine (PDA)/SiO2-CaO nanoparticle complexes were 3D printed using a pneumatic extrusion-based 3D printing technology and further modified on the surface with bovine serum albumin (BSA) for application in bone regeneration. The morphology, chemistry, and in vitro bioactivity of PDA/SiO2-CaO nanoparticle complexes were characterized (n = 3) and compared with those of mesoporous SiO2-CaO nanoparticles. Successful deposition of the PDA layer on the surface of the SiO2-CaO nanoparticles allowed better dispersion in a liquid medium and showed enhanced bioactivity. Rheological studies (n = 3) of ADA-GEL inks consisting of PDA/SiO2-CaO nanoparticle complexes showed results that may indicate better injectability and printability behavior compared to ADA-GEL inks incorporating unmodified nanoparticles. Microscopic observations of 3D printed scaffolds revealed that PDA/SiO2-CaO nanoparticle complexes introduced additional topography onto the surface of 3D printed scaffolds. Additionally, the modified scaffolds were mechanically stable and elastic, closely mimicking the properties of natural bone. Furthermore, protein-coated bilayer scaffolds displayed controllable absorption and biodegradation, enhanced bioactivity, MC3T3-E1 cell adhesion, proliferation, and higher alkaline phosphatase (ALP) activity (n = 3) compared to unmodified scaffolds. Consequently, the present results confirm that ADA-GEL scaffolds incorporating PDA/SiO2-CaO nanoparticle complexes modified with BSA offer a promising approach for bone regeneration applications.


Asunto(s)
Indoles , Nanopartículas , Polímeros , Andamios del Tejido , Humanos , Andamios del Tejido/química , Alginatos/química , Gelatina/química , Albúmina Sérica Bovina , Dióxido de Silicio , Regeneración Ósea , Impresión Tridimensional , Ingeniería de Tejidos/métodos , Osteogénesis
18.
Food Chem ; 447: 138969, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-38507947

RESUMEN

Food authenticity is extremely important and widely targeted bi-omics is a promising pipeline attributing to incorporating metabolomics and peptidomics. Colla Corii Asini (CCA, Ejiao) is one of the most popular tonic edible materials, with counterfeit and adulterated products being widespread. An attempt was devoted to develop a high-throughput and reliable DI-MRM3 program facilitating widely targeted bi-omics of CCA. Firstly, predictive MRM program captured metabolites and peptides in trypsin-digestive gelatins. After data alignment and structure annotation, primary parameters such as Q1 â†’ Q3 â†’ QLIT, CE, and EE were optimized for all 17 metabolites and 34 peptides by online ER-MS. Though a single run merely consumed 6.5 min, great selectivity was reached for each analyte. Statistical results showed that nine peptides contributed to distinguish CCA from other gelatins. After cross-validation with LC-MRM, DI-MRM3 was justified to be reproducible and high-throughput for widely targeted bi-omics of CCA, suggesting a meaningful tool for food authenticity.


Asunto(s)
Gelatina , Péptidos , Gelatina/química , Metabolómica , China
19.
Int J Biol Macromol ; 264(Pt 2): 130801, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38548500

RESUMEN

While oral administration offers safety benefits, its therapeutic efficacy is hindered by various physiological factors within the body. In this study, a novel approach was explored using a matrix consisting of 2 % chitosan and 2 % gelatin, with citric acid (CA) serving as a green cross-linking agent (ranging from 0.4 % to 1.0 %), and curcumin (Cur) as the model drug to formulate hydrogel carriers. The results showed that a 0.4 % CA concentration, the hydrogel (CGA0.4) reached swelling equilibrium in deionized water within 40 min, exhibiting a maximum swelling index was 539 g/g. The addition of Cur to the CGA hydrogel (CGACur) notably enhanced release efficiency, particularly in simulated intestinal fluid, where Cur release rates exceeded 40 % within 100 min compared to below 8 % in other solutions. Among these hydrogels, CGA0.4Cur exhibited the fastest degradation rate in the combined solution, reaching >90 % degradation after 7 days. Additionally, Cur and CA demonstrated positive effects on the tensile strength, antioxidant activity and antibacterial activity of hydrogels. Compare to the bioaccessibility of CGC (27 %), those of CGACur had increased to over 34 %. These findings offer provide theoretical support for CA-crosslinked chitosan/gelatin gels in delivering hydrophobic bioactive molecules and their application in intestinal drug delivery system.


Asunto(s)
Quitosano , Curcumina , Curcumina/química , Quitosano/química , Portadores de Fármacos/química , Gelatina/química , Hidrogeles/química , Liberación de Fármacos
20.
ACS Biomater Sci Eng ; 10(4): 2251-2269, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38450619

RESUMEN

Diabetic wound healing remains a worldwide challenge for both clinicians and researchers. The high expression of matrix metalloproteinase 9 (MMP9) and a high inflammatory response are indicative of poor diabetic wound healing. H8, a curcumin analogue, is able to treat diabetes and is anti-inflammatory, and our pretest showed that it has the potential to treat diabetic wound healing. However, H8 is highly expressed in organs such as the liver and kidney, resulting in its unfocused use in diabetic wound targeting. (These data were not published, see Table S1 in the Supporting Information.) Accordingly, it is important to pursue effective carrier vehicles to facilitate the therapeutic uses of H8. The use of H8 delivered by macrophage membrane-derived nanovesicles provides a potential strategy for repairing diabetic wounds with improved drug efficacy and fast healing. In this study, we fabricated an injectable gelatin microsphere (GM) with sustained MMP9-responsive H8 macrophage membrane-derived nanovesicles (H8NVs) with a targeted release to promote angiogenesis that also reduces oxidative stress damage and inflammation, promoting diabetic wound healing. Gelatin microspheres loaded with H8NV (GMH8NV) stimulated by MMP9 can significantly facilitate the migration of NIH-3T3 cells and facilitate the development of tubular structures by HUVEC in vitro. In addition, our results demonstrated that GMH8NV stimulated by MMP9 protected cells from oxidative damage and polarized macrophages to the M2 phenotype, leading to an inflammation inhibition. By stimulating angiogenesis and collagen deposition, inhibiting inflammation, and reducing MMP9 expression, GMH8NV accelerated wound healing. This study showed that GMH8NVs were targeted to release H8NV after MMP9 stimulation, suggesting promising potential in achieving satisfactory healing in diabetic treatment.


Asunto(s)
Diabetes Mellitus Experimental , Gelatina , Ratones , Animales , Gelatina/farmacología , Gelatina/química , Microesferas , Metaloproteinasa 9 de la Matriz/farmacología , Metaloproteinasa 9 de la Matriz/uso terapéutico , Diabetes Mellitus Experimental/tratamiento farmacológico , Cicatrización de Heridas , Inflamación , Macrófagos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA